

International Journal of Pharmacy & Life Sciences

Open Access to Researcher

©2010, Sakun Publishing House and licensed by IJPLS, This is Open Access article which permits unrestricted non-commercial use, provided the original work is properly cited.

Stability Indicating RP-HPLC method for simultaneous determination of Aspirin

and Omeprazole in the Bulk drug and Synthetic mixture

Nandni Sallam*, Amit Kumar Jain, Shweta Garg and Vaibhav Tiwari

Shri ram Institute of Pharmacy, Jabalpur (M.P.) - India

Article info	Abstract
	In the present research work, a successful attempt was made for
Received: 11/02/2023	"Validated HPLC method development for the estimation of some drugs
	in marketed formulation" which was developed by experimentation
Revised: 11/03/2023	based on thorough literature survey and ascertained by statistical
	parameters o fsampling. The simplicity, rapidity, accurate and
Accepted: 24/04/2023	reproducibility of the proposed methods completely fulfill the objective
r	of the research work of estimation of the drug in marketed formulation.
© IJPLS	Proposed method was found to be linear in the range of 5-25 μ g/ml
	aspirin and omeprazole with the correlation coefficient near to one
www.ijplsjournal.com	respictively. The validation and the reliability of preposed method were
51 · 5	assessed by recovery study. The recovery of added standards (80%,
	100%, 120%) was ranging from 100.042±0.260 to 100.033±0.208,
	99.944±0.428 and 100.08±0.641, 100.26±0.321 to 98.54±0.553 for
	aspirin and omeprazole respectively.

Key Words: Estimation, HPLC, Bulk drug

Introduction

Every year many new drugs and newer drug combinations enter the pharmaceutical area. bioanalytical methods for these new and first timer drugs are mostly confined only to the manufacturing company. However, availability of multiple analytical methods for the same drug/drug combinations in their formulations is always advantageous. Moreover, development of such methods helps in training the analysts for skillfully handling the sophisticated analytical instruments and the way for research approach. Reference literature and general survey reveals that similar work of development of bioanalytical methods for new drugs and their combinations introduced in the market is continuously underway in many academic institutions. The present work is also planned on similarlines.

There are numerous methods for the estimation of Aspirin in fix dosage form. (Gopalakrishnan et al., 2012) worked on analytical method development and validation of HPLC method for the determination of omeprazole in capsule dosage form. Hussein et al., 2016 worked on reversed phase HPLC assay for the determination of omeprazole in human plasma, Reddy et al., (2013) worked on simultaneous determination of aspirin and esomeprozole magnesium in combined tablets bv validated ultra performance liquid chromatographic method.

*Corresponding Author

The non-availability of analytical methods till now for the concurrent analysis of single and multi-component formulations made it worthwhile to pursue the present research work. It was also planned to validate the developed methods as per ICH guidelines.

Hence they offer wide area for research activity with relatively minimum chances of exactly repetitive work. The pharmaceutical dosage forms are widely present with multiple active components i.e. in combined dosage forms. This has opened new task for analyst for simultaneous estimation of aspirin and ticagrelor in combined dosage forms. Therefore, in proposed project, to attempt to develop simple, accurate and precise method for analysis of drugs in the blood plasma and validatethem.

Experimental

Identification and Characterization of drugs Solubility

Solubility of all three drugs was observed by dissolving them in different solvents.

Melting point- M.P. of the drug for aspirin and omeprazole 133-135 °C and 156-158 °C respectively found through Melting pointapparatus.

Determination of λ max of Drugs

Standard solution (10g/ml) of pure, Aspirin and Omeprazole was prepared. The pure drug solution was scanned on UV spectrophotometer, and λ max determined.

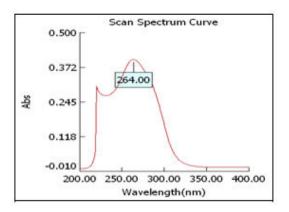


Figure 1: Determination of λmax of Aspirin

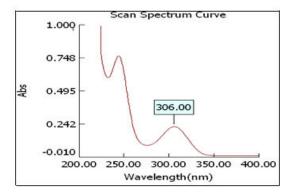


Figure 2: Determination of λ max of Omeprazole

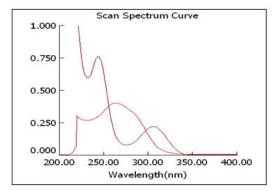


Figure 3: Overlain spectra of both the drugs

Preparation of mobile phase

1.75 gm KH_2PO_4 in 1000 ml of water add 1 ml of TEA and adjust the pH – 6 with OPA. Filtered through 0.45 filter paper.

Selection of diluent

Diluent used for preparation of sample were compatible with mobile phase and no any significant affect retention and resolution of analyte. After various trials Acetonitrile was used as diluents.

Preparation of standard stock solution Accurately weighed 10 mg of aspirin and omeprazole was transferred into 50 ml volumetric flasks separately and dissolved in 10 ml of acetonitrile, then volume was made up to 50 ml with acetonitrile and vortex it to get complete dissolution of drug. Stand it aside for few minute, Concentration of aspirin and omeprazole was 200 μ g/ml. (stock-A)

Preparation of Sub Stock Solution 5 ml of solution was taken from stock-A of aspirin transferred into 10 ml volumetric flask separately

and diluted up to 10 ml with diluent (Acetonitrile) to give concentration of $100 \ \mu g/ml(Stock-B)$.

Preparation of DifferentSolution

0.5ml, 1.0 ml, 1.5ml, 2.0ml and 2.5ml of stock-B was taken separately in 10 ml volumetric flask and volume was made up to 10ml with (Acetonitrile). This gives the solutions of $5\mu g/ml$, $10\mu g/ml$, $15\mu g/ml$, $20\mu g/ml$, $25\mu g/ml$ for drug. In same manner $5\mu g/ml$, $10\mu g/ml$, $15\mu g/ml$, $20\mu g/ml$, $25\mu g/ml$, $10\mu g/ml$, $25\mu g/ml$, $20\mu g/ml$, $20\mu g/ml$, $25\mu g/ml$ of omeprazole alsoprepared.

Linearity and Calibration Graph

To establish the linearity of analytical method, a series of dilution ranging from 5-25 g/ml was prepared. All the solution were filtered through 0.2m membrane filter and injected, chromatograms were recorded at 275 nm and it was repeat for three times. A calibration graph was plotted between the mean peak area and respective concentration and regression equation was derived.

Table 1. Linearity of aspirin					
Std.	5	10	15	20	25
Conc.					
Rep-1	565.589	1110.256	1565.589	2154.589	2650.145
Rep-2	572.256	1125.565	1560.254	2150.478	2645.589
Rep-3	583.235	1116.658	1547.265	2165.589	2665.458
Mean	573.693	1117.493	1557.703	2156.885	2653.731
S.D.	8.910	7.689	9.425	7.813	10.409
% RSD	1.553	0.688	0.605	0.362	0.392

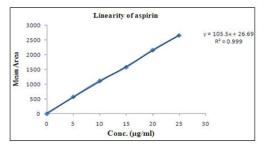
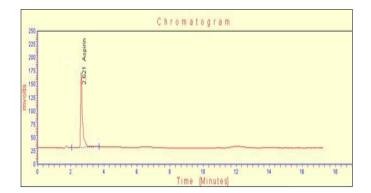
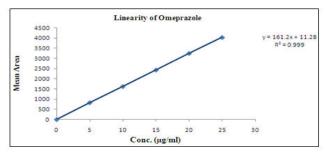


Figure 4: Calibration Curve of aspirin

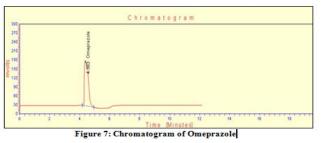

Figure 5: Chromatoram of aspirin

Table	2:	Linearity	of O	meprazole
Lanc	∕	Lincarity	UL UL	mupi azoiu

Std. Conc.	5	10	15	20	25
Rep-1	825.565	1610.254	2425.658	3250.215	4025.658
Rep-2	830.254	1621.154	2430.145	3245.897	4030.145
Rep-3	832.145	1632.254	2436.658	3247.589	4032.215
Mean	829.321	1621.221	2430.820	3247.900	4029.339
S.D.	3.388	11.000	5.531	2.176	3.352
% RSD	0.408	0.679	0.228	0.067	0.083

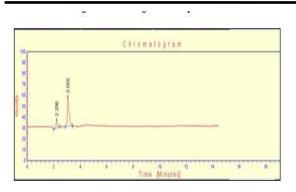


Figure 8: Chromatogram of aspirin and omeprazole

System Suitability Parameters

Separation variables were set and mobile phase was allowed to saturate the column at 1.00 ml/min. After complete saturation of column, three replicates of working standard of Aspirin 10 μ g/ml was injected separately. Peak report and column performance report were recorded for allchromatogram.

Table 3: System suita	bility parameters of
aspi	rin

System	AUC	No. of	Tailing
suitability		theoretical	factor
Parameter		plates	
Rep-1	1250.256	3245	1.10
Rep-2	1252.256	3265	1.11
Rep-3	1245.874	3214	1.10
Rep-4	1242.654	3215	1.10
Rep-5	1242.145	3245	1.12
Rep-6	1244.456	3213	1.10
Mean	1246.274	3232.833	1.11
S.D.	3.769589	21.894	0.159

Table 4: System suitability parameters of
Omeprazole

System suitability Parameter	AUC	No. of theoretical plates	Tailing factor
Rep-1	1610.254	3050	1.32
Rep-2	1621.154	3045	1.35
Rep-3	1632.254	3045	1.21
Rep-4	1640.578	3047	1.45
Rep-5	1638.987	3050	1.65
Rep-6	1650.547	3056	1.54
Mean	1632.296	3048.833	1.420
S.D.	14.536	4.167	0.159

Laboratory Sample Analysis

The In-house tablet formulation of aspirin is available in the strength of 81mg and omeprazole 40mg. Based on this different standard solutions were prepared for quantitative analysis, which gives satisfactory results. Stock solution was prepared in the same manner. Further dilutions were made to prepare the mixed standard of desired concentration.

Table 5: Laboratory sample analyses

	Label claim			
	Aspirin (mg)Omeprazole			
Amount present	81	40		
Amount found	80.98±0.45	39.95±0.25		
% Assay	99.98±0.56	99.88±0.12		

	Table 6.: Response ration data for linearity of Aspirin				
Replicates	Concentration (g/ml)	Mean AUC	Response Ratio		
	5				
Rep-1		573.693	114.739		
Rep-2	10	1117.493	111.749		
Rep-3	15	1557.703	103.847		
Rep-4	20	2156.885	107.844		
Rep-5	25	2653.731	106.149		
SD	· · · · ·		4.371		
%RSI)		4.015		

Table 7: Response ration data for linearity of Omeprazole

Replicates	Concentration (g/ml)	Mean AUC	Response Ratio
		829.321	
Rep-1	5		165.864
Rep-2	10	1621.221	162.122
Rep-3	15	2430.820	162.055
Rep-4	20	3247.900	162.395
Rep-5	25	4029.339	161.174
SD			1.815
%RSD)		1.080

Table 6.8: Recovery study of Aspirin

Level of Recovery	80	100	120
(%)			
Amount present	10	10	10
(mg)			
	10	10	10
	10	10	10
Amount of Std.	8	10	12
added			
(mg)	8	10	12
	8	10	12
Amount recovered	7.98	9.98	11.98
(mg)			
	8.01	10.02	11.95
	8.02	10.01	12.05

_			I	
		99.75	99.80	99.833
	% Recovery	100.12	100.20	99.583
		100.25	100.10	100.417
\mathbf{N}	Iean % Recovery	100.042±0.260	100.033±0.208	99.944±0.428

Table 9: Recovery study of Omeprazole

Table 9: Recovery study of Onteprazote					
Level of Recovery	80	100	120		
(%)					
Amount	10	10	10		
present	10	10	10		
(mg)	10	10	10		
Amount of Std.	8	10	12		
added	8	10	12		
(mg)	8	10	12		
Amount recovered	7.98	9.98	11.85		
(mg)	8.03	9.95	12.01		
	7.95	9.98	11.98		
	99.75	99.80	98.75		
% Recovery	100.38	99.50	100.08		
	99.38	99.80	99.83		
Mean % Recovery	99.833±0.505	99.700±0.173	99.556±0.708		

Table 10: Results of analysis Data of tablet Formulation

Drug	Label claim (mg)	Amount Found (%)	Label claim (%)	S.D.
Aspirin	81mg	80.98	99.97	0.154
Omeprazole	40mg	39.95	99.87	0.165

Table 6.11: Intermediate Precision of Aspirin

Table 0.11. Intermediate Treesion of Aspirin			
Intra-day Precision		Inter-day Precision	
	% Label Claim		% Label Claim
After 1hr	99.98	First day	98.98
After 2hr	99.81	Second day	98.12
After 3hr	99.55	Third day	98.00
After 4hr	99.45		
After 5hr	99.32		

International Journal of Pharmacy & Life Sciences

Volume 14 Issue 5: May 2023

After 6hr	99.05		
Mean	99.527	Mean	98.367
SD	0.335	SD	0.535
% RSD	0.337	% RSD	0.543

Table 6.12: Intermediate Precision of Omeprazole

Intra-day Precision		Inter-day Precision	
% Label Claim			- % Label Claim
After 1hr	99.12	First day	98.00
After 2hr	99.05	Second day	97.98
After 3hr	99.01	Third day	97.50
After 4hr	98.75		
After 5hr	98.21		
After 6hr	98.05		
Mean	98.698	Mean	97.827
SD	0.460	SD	0.283
% RSD	0.467	% RSD	0.289

Table 12: LOD and LOQ

Name	LOD (g/ml)	LOQ (g/ml)
Aspirin	0.89	2.41
Omeprazole	0.45	1.25

Conclusion

The simplicity, rapidity, accurate and reproducibility of the proposed methods completely fulfill the objective of the research work of estimation of the drug in marketed formulation. Proposed method was found to be linear in the range of 5-25 µg/ml aspirin and omeprazole with the correlation coefficient near to one respictively. The validation and the reliability of preposed method were assessed by recovery study. The recovery of added standards (80%,100%120%) was ranging from 100.042±0.260 to 100.033±0.208, 99.944±0.428 and 100.08±0.641, 100.26±0.321 to 98.54±0.553

for aspirin and omeprazole respectively.

Liquid chromatographic system from waters comprising of manual injector, Waters 515 binary pump for constant flow and constant pressure delivery and U.V. detector connected to data ace software controlling the instrumentation as well as processing the data generated were used. The isocratic mobile phase consisted of 1.75 gm KH₂PO₄ in 1000 ml of water add 1 ml of TEA and adjust the pH – 6 with OPA in the ratio of 30:70 v/v at a flow rate of 1.0 ml min⁻¹. A thermo C-18 column (4.6 x 250mm, 5 μ particle size) was used as the stationary phase, 275.0 nm was selected as the detection wavelength for UV-vis. detector.

International Journal of Pharmacy & Life Sciences

The proposed methods were found to be linear in the range of 5-25 μ g/ml with correlation coefficient close to one. Precision was determined by repeatability, Intermediate precision and reproducibility of the drugs. The robustness of developed method was checked by changing in the deliberate variation in solvent. The result obtained shows the developed methods to be Cost effective, Rapid (Short retention time), Simple, Accurate (the value of SD and %RSD less than 2), Precise and can be successfully employed in the routine analysis of these drugs in bulk drug as well as in tablet dosage form.

References

- 1. R.M. Verma, "Analytical Chemistry (Theory and Practice)", 3rd Edition, PP- 5-10.
- 2. Dipali Patel, Nishit kumar Patel, Reeta Vaishy, Viral Patel, Chiragsinh Solanki, and Mitul Patel, Development and Validation of RP-HPLC Method for Simultaneous Estimation of Aspirin and Esomeprazole Magnesium in Tablet Dosage Form, Journal of Chemistry Volume 2013, Article ID 751940, 5.
- PalavaiSripal Reddy, Kishore Kumar Hotha, and ShakilSait, Complexity in Estimation of Esomeprazole and its Related Impurities' Stability in Various Stress Conditions in Low-Dose Aspirin and Esomeprazole Magnesium Capsules, Sci Pharm. 2013 Apr-Jun; 81(2): 475–92.
- 4. Kalakonda Sri Nataraj, Mohammad BadrudDuza, KalyaniPragallapati, DussaKiran Kumar, Development and validation of RP-HPLC method for the estimation of omeprazole in bulk and capsule dosage forms,

International Current Pharmaceutical Journal 2012, 1(11):366-69.

- 5. Singh Sunil, Choudhary Nisha, Rai Jyoti, Inamullah, Sharma Surabhi, Yadav Ajit Kumar, Gautam Hemendra, Chaturvedi Shashank, Agrawal Vipin Kumar, Validated RP-UPLC Method Development for Estimation of Lansoprazole in Tablet Dosage Form, International Journal of Pharmaceutical Sciences and Drug Research 2013; 5(3):105-7.
- Sadhana Rajput, SurajFanse, RPHPLC method for Simultaneous Estimation of Lansoprazole and aspirin in Bulk and Laboratory Mixture, Journal of Advanced Pharmacy Education & Research, 2015, 5(2),87-93.
- S. Gopalakrishnan, K. Jothy and K. Dhanalakshmi, Analytical method development and validation of HPLC method for the determination of omeprazole in capsule dosage form, Elixir Appl. Chem. 52 (2012)11283-86.
- Rajaa F. Hussein, Nada H. Binhashim, Syed N. Alvi and Muhammad M. Hammami, A validated reversed phase HPLC assay for the determination of omeprazole in human plasma, European journal of pharmaceutical and medical research, 2016, 3(6),26-30.
- Yarram Rama Koti Reddy, Sudershan Reddy G, M. R. P. Reddy and K. Mukkanti, Rapid simultaneous determination of aspirin and esomeprozole magnesium in combined tablets by validated ultra performance liquid chromatographic method, Journal of Chemical and Pharmaceutical Research, 2013,5(4):181-87.

Cite this article as:

Sallam N., Jain A.K., Garg S. and Tiwari V. (2023). Stability Indicating RP-HPLC method for simultaneous determination of Aspirin and Omeprazole in the Bulk drug and Synthetic mixture. *Int. J. of Pharm. & Life Sci.*, 14(5): 16-23.

.

Source of Support: Nil Conflict of Interest: Not declared For reprints contact: ijplsjournal@gmail.com